a2 United States Patent

Gao

US009122424B1

US 9,122,424 B1
Sep. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(60)

(1)

(52)

(58)

FIFO BUFFER CLEAN-UP

Applicant: Western Digital Technologies, Inc.,
Irvine, CA (US)

Inventor: Jianxun Gao, Ladera Ranch, CA (US)

Assignee: Western Digital Technologies, Inc.,
Irvine, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 13 days.

Appl. No.: 14/018,715

Filed: Sep. 5,2013

Related U.S. Application Data

Provisional application No. 61/847,614, filed on Jul.
18, 2013.

Int. CI.

GOG6F 3/00 (2006.01)

GOGF 13/38 (2006.01)

GOGF 13/00 (2006.01)

GOG6F 5/10 (2006.01)

U.S. CL

CPC oo GO6F 5/10 (2013.01)
Field of Classification Search

None

See application file for complete search history.

400

‘\‘

(56) References Cited

U.S. PATENT DOCUMENTS

5,809,324 A * 9/1998 YUNg ..coovvevvveiriieiircas 712/23
6,223,174 B1* 4/2001 Ladwigetal. ...cccocoevvrnnnne. 1/1
6,681,314 Bl 1/2004 Matsuo et al.
2004/0091114 Al* 5/2004 Carteretal. 380/259
2007/0186057 Al* 82007 Moll et al. .. 711/146
2007/0204130 Al* 82007 Hass et al. . 7117207
2011/0225334 Al* 9/2011 Byrne et al. ... 710/110
2013/0158973 Al* 6/2013 Hsiongcccccovvcrncennn 703/14

* cited by examiner

Primary Examiner — Michael Sun
(74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.

(57) ABSTRACT

Systems and methods are disclosed for managing data entry
buffers in a data storage device. A memory of the data storage
device includes one or more data input ports. The device
further includes a controller configured to receive a data entry
over one of the data input ports and store the data entry in a
first data structure (e.g., a FIFO data structure). The data entry
is stored in the first data structure among other data entries
received over various data input ports. The controller stores a
data entry corresponding to the data entry stored in the first
data structure in a second data structure. Entries in the second
data structure include a valid bit field and one or more con-
dition fields. The controller indicates, using a valid bit field of
the second data structure data entry, that the corresponding
data entry stored in the first data structure is valid.

22 Claims, 10 Drawing Sheets

NDITION FIFQO MANAGEMENT 402

—]

RECEIVE DATA ENTRY OVER FIRST OR
SECOND DATA PORT

| STORE ENTRY IN FUNCTION FIFO

STORE CORRESPONDING ENTRY IN
CONDITION FIFO

L, U, U, U

SET VALID BIT TO ‘1’ IN CONDITION FIFO
ENTRY

l 410

412
EVENT OCCURRED?

YES 414
¥

CLEAN UP CONDITION FIFO

US 9,122,424 Bl

Sheet 1 of 10

Sep. 1, 2015

U.S. Patent

AdOWIW -t P d3ddnd

4

061

}l 1d40d

-

YITIOYINOD

0 140d

-

1SOH

1SOH

'

Y¥0SS300Yd

/

091

N

o€l

3D1A30 IOVYOLS V1va

Okl

ool

US 9,122,424 B1

Sheet 2 of 10

Sep. 1, 2015

U.S. Patent

¢ 9l

(¥4

0144
\ p 1SOH
S
A|
AYOWIW vivd Y<EEEpk! SANVWWOD
[t P l—
JTILYTOA-NON AOWIW
YITIOYINOD » 1SOH
067 0€C \

3D0IA3Q IOVYO0LS V1Lva

/

09¢

01¢

U.S. Patent

300

.

Sep. 1, 2015 Sheet 3 of 10

US 9,122,424 B1

302
(NORMAL OPERATION)-/

POPULATE FUNCTION FIFO AND
CONDITION FIFO

/ 304

EVENT OCCURS

/‘ 306

CLEAN-UP CONDITION FIFO

/‘ 308

310
GESUME NORMAL OPERATIOD/

FIG. 3

U.S. Patent Sep. 1, 2015 Sheet 4 of 10 US 9,122,424 B1

400

\ CONDITION FIFO MANAGEMENT 402

RECEIVE DATA ENTRY OVER FIRST OR
SECOND DATA PORT

404

STORE ENTRY IN FUNCTION FIFO —J

406

STORE CORRESPONDING ENTRY IN)
CONDITION FIFO

408

SET VALID BIT TO ‘1’ IN CONDITION FIFO)
ENTRY

410

412
(24 NO EVENT OCCURRED?
YES 414
\ 4
CLEAN UP CONDITION FIFO —J

FIG. 4

US 9,122,424 B1

Sheet 5 of 10

Sep. 1, 2015

U.S. Patent

OdLdM

od.1dy

oB8essaw

oB8essaw

=

oB8essaw

oB8essaw

oB8essaw

oB8essaw

oB8essaw

oB8essaw

oB8essaw

oB8essaw

L+[

L-[

L+l

bl

0414 NOILDNNA

G "Old

Fdldm

d1dy

puod |1 puod | @A | 1N
[J
[J
®
puod [puod | @iA | i+f
puod || puod | @A | !
puod [puod | @A |-
®
[J
[]
puod |1 puod | @lA | I+t
puod |1 puod | @lA | !
puod |1 puod | @A | -t
[J
o
[J
puod |1 puod | @A |T
puod |1 puod | @A |1
puod |1 puod | diA |0

O4l4 NOILIANOD

US 9,122,424 B1

Sheet 6 of 10

Sep. 1, 2015

U.S. Patent

OULdM e

OULdY e

PLIDISOH LN
®
[J
[J
PLIDISOH L+
PLIDISOH [
PWDISOH L=
®
®
[4
PLIDISOH L+
PLIDISOH !
PLIDISOH !
[4
®
®
PLIDISOH z
PLIDISOH L
PLIDISOH 0

04i4 NOILDONNA

OI4

ULdM e

LHLdY e———

diyod _ aiA _ 1-N
o
[J
[_J
diiod aiA L+(
diiod aiA [
diiod aiA L-[
®
[J
o
0# Hod aiA J+1
L# 1od aiA !
0# Hod aiA [
L J
[_J
[J
diiod aiA [4
diiod aiA l
diiod aiA 0

0414 NOILIANOD

US 9,122,424 B1

Sheet 7 of 10

Sep. 1, 2015

U.S. Patent

g/ "Old

LULdY LULdM m—

>

di}od aia

[]

[

®
di}od aia
di}od aia
di}od aia

[]

[4

o
0# Hod aia
L # Hod aia
0# Hod aia

[

®

®
di}od aia
di}od aia
di}od aia

b+l

[

0414 NOILIONOD

V{ "Old

++0 IND
19,L => (4LdM)QA o513
04.l => (4LdM)TTA
(omeA == (4Ldy)peay)
0=>01ND

(N == 0 1ND)}I

W=>1 IND
(1 ¥1dM == 1L dL1ddH

(0 ¥1dYd = | dldy)
sawn (W-N) peay

¢l dldM =i | ¥1dd

0=>11IND
(1 ¥1ldm == | d1du)H

(1 ¥1dM =i | dLdudl

US 9,122,424 B1

Sheet 8 of 10

Sep. 1, 2015

U.S. Patent

g8 "Old

~
—”
-

- —

LYLldY ‘LdLldM -—
h

——————— e =

\
\
\
\
L
1
[}
'
|
1
1
[}
[}
i
]
!
[}
]
[}
1
1
1
1

LYLAY ‘LYLdM =t

-->

>

aniod | d1A

[J

[]

e
aniod | d1A
aniod | d1A
aniod | d1A

[J

[J

[]
0#3HOd | «0»
LH#MOD | «ls
0#3HOd | «0»

L

[J

@
aniod | d1A
aniod | d1A
aniod | d1A

0414 NOILIONOD

v8 "Old

++0 IND
19,L => (4LdM)QA o513
04.l => (4LdM)TTA
(omeA == (4Ldy)peay)
0=>01ND

' (N==0 1N}
QD

W=>11ND
(1 ¥1ldm == | d1dWH

i1 ¥LdM =T | ¥ldY
0=>11IND
(1 ¥1ldm == | d1d)H

(1 ¥1dM =i | dLdd)yl

(0 ¥1dYd = | dldy)
sawn (W-N) peay

US 9,122,424 B1

Sheet 9 of 10

Sep. 1, 2015

U.S. Patent

0dLdm

0dLdd

g6 Old

| puoon uen

=

®
[]
[]
pDIsoH L1+ [
P pwiIsOH (
pDIsoH (S
®
°
[]
pw)IsoH L+t
P PWIISOH t
pw)IsoH L-t
°
[]
[J
pw)IsoH z
pw)IsoH L
pw)IsoH 0

0414 NOILONNA

LdLldm

Ld.Lldd

~
’l

-

diyod diA | N

———

e e e

~

L]

®

L]
diyod aiA
diyod aiA
diyod aiA

L]

L J

®
0#¥od |0,
L#MOd | uly
0#¥od |0,

[J

o

L]
diyod aiA
diyod aiA
diyod aiA

L+ f

L-f

0414 NOILIONOD

W=>1 IND
(1 ¥1ldM == 1L 41dWH

¢ dldM =i | d1dd

(1 ¥1dM =i | dL1dd)dl

V6 Old

++0 LND
19.L => (4LdM)QA o913
09,1 => (4LdM)ATA
(omea == (Y 1dd)peay)
0=>0 IND

(N ==0 1ND)H

0=>1 1ND

0 d1ldY = | d1dy)
Y1dM == | dL1du)

sow) (W-N) peay

U.S. Patent Sep. 1, 2015 Sheet 10 of 10 US 9,122,424 B1

FUNCTION FIFO PROCESSING

1000 1002

\‘ READ OPERATION STORED IN)

/ FUNCTION FIFO AT RPTRO

l 1003
RPTRO++ —J
l 1004

ACCESS CONDITION FIFO AT RPTR1 —J

1006

VALID BIT ==1?

Q<—No

Yis 1008

EXECUTE OPERATION J

1010

RPTRO == WPTRO?

YES
+ 1012

oo~

FIG. 10

US 9,122,424 B1

1
FIFO BUFFER CLEAN-UP

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to provisional U.S. Patent
Application Ser. No. 61/847,614, filed on Jul. 18, 2013, which
is hereby incorporated by reference in its entirety.

BACKGROUND

1. Technical Field

This disclosure relates to computing systems. More par-
ticularly, the disclosure relates to systems and methods for
managing data structures in a computing system.

2. Description of the Related Art

Data can be stored in computing systems in various data
structures, such as first-in,-first-out (FIFO) data structures
and the like. For example, a computing device may maintain
one or more data structures for buffering data entries to be
processed. Management of such data structures may involve
complications when buffered data entries become outdated or
invalid prior to processing.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are depicted in the accompanying
drawings for illustrative purposes, and should in no way be
interpreted as limiting the scope of this disclosure. In addi-
tion, various features of different disclosed embodiments can
be combined to form additional embodiments, which are part
of this disclosure. Throughout the drawings, reference num-
bers may be reused to indicate correspondence between ref-
erence elements.

FIG. 1 is a block diagram illustrating an embodiment of a
computing system.

FIG. 2 is a block diagram illustrating an embodiment of a
data storage system.

FIG. 3 is a flow diagram for an embodiment of a process of
managing data structures in a computing system.

FIG. 4 is a flow diagram for an embodiment of a process of
managing data structures in a computing system.

FIG. 5 is a block diagram illustrating data structures
according to one embodiment.

FIG. 6 is a block diagram illustrating data structures
according to one embodiment.

FIG. 7A illustrates a state diagram for a process of revising
a data structure in accordance with one embodiment.

FIG. 7B is a block diagram illustrating a data structure
according to one embodiment.

FIG. 8A illustrates a state diagram for a process of revising
a data structure in accordance with one embodiment.

FIG. 8B is a block diagram illustrating a data structure
according to one embodiment.

FIG. 9A illustrates a state diagram for a process of revising
a data structure in accordance with one embodiment.

FIG. 9B is a block diagram illustrating data structures
according to one embodiment.

FIG. 10 is a flow diagram showing an embodiment of a
process for executing operations in a computing system.

DETAILED DESCRIPTION

While certain embodiments are described, these embodi-
ments are presented by way of example only, and are not
intended to limit the scope of protection. Indeed, the novel
methods and systems described herein may be embodied in a

10

15

20

40

45

50

2

variety of other forms. Furthermore, various omissions, sub-
stitutions and changes in the form ofthe methods and systems
described herein may be made without departing from the
scope of protection.

Overview

In certain computing environments, one or more data struc-
tures are maintained as buffers for storing commands and/or
data in an operational queue. Over time, various entries in
such data structures may become invalid prior to the entries
being dequeued. For example, in a shared logic design (such
as, for example, a dual port controller), if reset occurs with
respectto one of the ports, it may be necessary or desirable for
data shared logic to be cleaned-up to prevent invalid entries
associated with the reset port(s) from being executed on.

FIFO (First In, First Out) is acommonly used data structure
for command/data buftering. In a FIFO implementation, data
entries may be queued, wherein process is ordered according
to a first-come, first-served behavior; that is, entries are
removed from the queue (dequeued) in the order they were
added to the queue (enqueued). Certain embodiments dis-
closed herein provide for the use of one or more FIFO data
structures wherein, when reset or error occurs, one or more
FIFO entries are cleaned-up before normal operation
resumes. The present disclosure provides systems and meth-
ods for cleaning-up invalid entries in FIFO data structures.
Computing System

FIG. 1 illustrates a computing system 100 utilizing shared
instruction and/or data buffering logic. The system 100
includes a data storage device 105 which in one embodiment
includes a controller 130 that interfaces two hosts 110, 111 to
a buffer 140. The hosts 110, 111 may be, for example, host
computers, data storage devices, or other peripheral devices
or combinations thereof. As shown in FIG. 1, the first host
device 110 is interfaced to the controller 130 of the data
storage device 105 through a first channel or port, Port 0. Data
may be transterred between the hosts 110, 111 and the con-
troller 130 via one or more data buses. The second host device
111 is interfaced to the controller through a second channel or
port, Port 1. The controller 130 may communicate with one or
more processors 160, as shown. For example, the controller
130 may communicate with the processor 160 through a
processor interface (not shown) using a standard interface,
wherein the processor 160 is configured to receive data
entries stored in the buffer 140 and process or execute the
same. In one or more embodiments, the function(s) of pro-
cessor 160 may be performed by the controller 130.

Certain instructions and/or data received by the controller
130 from the hosts 110, 111 are buffered in a shared data
structure 140. In certain embodiments, the data structure 140
is a FIFO data structure, wherein buffered instructions and
data are operated on once previously-buffered valid entries in
the data structure have been cleared from the buffer. The
buffer may be configured to transfer user data to and from the
memory 150 in certain embodiments. In some embodiments,
each of the buffer 140 and the memory 150 may be part of the
controller 130 or external to the controller.

FIG. 2 is a block diagram illustrating a combination of one
or more hosts 210, 211 with a data storage device 260 includ-
ing one or more buffers for buffering host instructions and/or
data. As shown, the data storage device 260 includes a con-
troller 230, which in turn includes one or more volatile
memory chips comprising one or more buffer data structures
240. In certain embodiments, the bufters 240 comprise FIFO
data structures configured to implement improved buffer
clean-up according to certain aspects of the present disclo-
sure. In certain embodiments, the controller 230 is configured
to receive memory access commands from storage interfaces

US 9,122,424 B1

3

(e.g., drivers) residing on the hosts 210, 211 and cache and
execute commands according to a FIFO queue in the non-
volatile memory 250. Data may be accessed/transferred
based on such commands.

In certain embodiments, the non-volatile memory 250 may
comprise rotating magnetic media, solid-state media, or a
combination of rotating magnetic and solid-state media (e.g.,
in a hybrid storage drive).

FIFO Management

As described above, a computing system implementing
FIFO buffer management may be configured to receive data
and/or commands over a plurality of data input ports. Con-
troller functionality according to one or more embodiments
disclosed herein may provide port and/or virtual function
(VF) reset and error handling using the following three-phase
scheme: (1) Graceful Stop Phase: when port/VF reset and
error event occurs, some or all modules may be configured to
stop gracefully through hardware and/or firmware execution;
(2) Clean-up Phase: affected data structures may be cleaned-
up using hardware and/or firmware; and (3) Resume Phase:
some or all modules may be permitted to resume normal
operation. With respect to the second phase, clean-up of
entries inside FIFO data structures may present certain diffi-
culties for firmware. For example, firmware may generally
not be able to perform such functions efficiently. Therefore,
certain embodiments disclosed herein provide hardware solu-
tions for FIFO entry clean-up.

FIG. 3 is a flow diagram for an embodiment of a process
300 of managing data structures in a data storage device.
According to the process 300, a data storage device is in a
normal operating state at block 302. At block 304, the process
300 involves populating one or more function FIFOs and
condition FIFOs. For example, as is described in greater
detail below, a function FIFO may be utilized to buffer or
store host commands or data for processing by the data stor-
age device. Additionally, a condition FIFO may be utilized to
track conditions associated with entries in the function FIFO.
The condition FIFO may be used to determine whether
entries in the function FIFO are valid.

Atblock 306, an event occurs that is related in some way to
data entries stored in the function FIFO. For example, the
event may be something that has a bearing on the validity of
one or more entries of the function FIFO, such as a port reset
or connection/power loss.

When an event occurs that affects the validity of buffered
data entries in the function FIFO, it may be desirable to
identify which entries in the function FIFO have been
affected by the event in order to avoid wasting system
resources processing/executing such entries. Therefore, in
response to occurrence of the event at block 306, the process
300 involves performing clean-up of the condition FIFO to
reflect that certain data entries affected by the event are
invalid.

Once the condition FIFO has been cleaned up, the data
storage device may resume normal operation, wherein, when
processing data entries/commands from the function FIFO,
the condition FIFO is queried to determine whether the func-
tion FIFO entries are to be processed, or are invalid. In certain
embodiments, the process 300 is performed at least partially
by the controller 130 or the controller 230, discussed above
with respect to FIGS. 1 and 2, respectively.

FIG. 4 provides a more detailed flow diagram for an
embodiment of a process 400 of managing data structures in
a computing system. In particular, the process 400 relates to
management of a condition FIFO, as described herein, for
tracking the validity of function FIFO entries.

10

25

30

40

45

4

With reference to FIG. 4, in a data storage device, data may
be received over one or a plurality of data ports. For example,
different data ports may correspond to data connections with
different hosts and/or systems. A data entry received over one
of'the input ports may be stored in a data structure, such as a
FIFO configured for storing host commands and/or other
types of data entries, as shown at block 404. For every func-
tion FIFO entry, a corresponding system-generated data entry
may also be stored in a second data structure, such as a FIFO
(referred to herein as a “condition FIFO”) having a substan-
tially similar or identical number of entries as the function
FIFO, as shown at block 406. With respect to data size, the
condition FIFO may be much smaller than the function FIFO.
In certain embodiments, condition FIFO entries include one
or more fields for tracking conditions/information associated
with function FIFO entries. For example, a valid entry field
may be used to indicate whether respective corresponding
references in the function FIFO are valid or not. In certain
embodiments, as shown at block 408, the valid entry field may
include a single bit, or other data unit, that is set to, for
example ‘1’ to indicate validity of the corresponding entry in
the function FIFO. In an embodiment, a value of ‘0’ in the
valid bit field indicates that the entry is invalid. In yet another
embodiment, a value of ‘0’ represents valid, whereas ‘1’
represents invalid.

In addition, the condition FIFO entries may also include
one or more condition fields that may be set to indicate a
condition of the corresponding entry in the function FIFO.
For example, a condition field may indicate over what port
among a plurality of ports the corresponding function FIFO
entry was received. Condition fields may provide information
relating to any system condition that may have a bearing on
the validity of buffered data entries in the function FIFO. For
example, an event may occur in the computing system that
affects the validity of a subset of entries in the function FIFO.
One or more condition FIFO fields may be used to identify
which among the function FIFO entries is affected by the
event by containing information identifying respective func-
tion FIFO entries as being associated with a particular con-
dition.

As an example use of one or more condition fields, in an
embodiment, the process 400 includes identifying the data
port over which a data entry was received using a condition
field of the corresponding condition FIFO entry. When an
event occurs that may affect the validity of one or more
function FIFO entries, the process 400 proceeds to block 414,
where the condition FIFO is cleaned up to reflect the effect of
the event on the validity of the function FIFO entries. For
example, the valid bit field of entries in the condition FIFO
corresponding to function FIFO entries that were rendered
invalid by the event may be set to ‘0,” or otherwise identified
using a valid entry field of the condition FIFO as being
invalid. Once the condition FIFO has been cleaned up, the
data storage device may resume normal operation.

When no validity-affecting event has occurred, the process
400 loops back to block 402. That is, the process 400 involves
continued population of entries in the function and condition
FIFOs while monitoring the system for occurrence of valid-
ity-affecting events. In certain embodiments, the process 400
is performed at least partially by the controller 130 or the
controller 230, discussed above with respect to FIGS. 1 and 2,
respectively.

FIG. 5 illustrates a FIFO solution utilizing a plurality of
FIFO data structures according to one embodiment. The
Function FIFO can be a FIFO for normal functional opera-
tion, as commonly implemented in buffer design. For
example, the Function FIFO may be used to buffer data/

US 9,122,424 B1

5

commands received from one or more hosts. The Condition
FIFO may be a non-functional FIFO used primarily for track-
ing the status of Function FIFO entries, rather than for func-
tional operation.

As shown, the Function FIFO may comprise a plurality of
message entries, which may contain host commands or other
types of messages. While the illustrated FIFO shows one
element per message, it should be understood that messages
in the Function FIFO may be any suitable or desirable size. In
certain embodiments, individual messages (or entries) may
consist of multiple elements.

As described above, it may be desirable under certain con-
ditions for certain entries in Function/Condition FIFOs to be
cleaned-up in a clean-up phase. In certain embodiments, the
various fields of the Condition FIFO shown in FIG. 5 may be
represented as follows: VLD (valid bit) may indicate whether
an associated entry in the Function FIFO is valid; Cond 1 and
Cond 2 may refer to conditions that may be checked to deter-
mine if the associated entry in the Function FIFO is valid or
not. While two condition fields are shown (Cond 1, Cond 2),
any number of condition fields may be included. In certain
embodiments, each entry may have as many conditions as
desired or practical.

In certain embodiments, Cond 1 (or Cond 2) represents the
same type condition for all entries. For example, Cond 1
might correspond to a port identification ID (PortID) identi-
fying the port through which the relevant entry was received,
and Cond 2 might correspond to virtual function identifica-
tion number (VFID), or some other condition.

With respect to the Function FIFO, the write pointer
WPTRO points to a location in the Function FIFO where
incoming messages/entries are stored. Therefore, the location
of WPTRO may be incremented or otherwise relocated after
each write. The read pointer, RPTRO, on the other hand,
marks the current location from which FIFO entries are
dequeued; that is, in certain embodiments, RPTRO points to
the message that has been stored in the Function FIFO for the
longest period of time without being processed. Therefore,
RPTRO is likewise incremented or otherwise relocated with
each removal of a message from the FIFO.

During normal operation (functional operation), read
pointer RPTR1 and write pointer WPTR1 of the Condition
FIFO may be manipulated in a similar manner as the points
RPTRO and WPTRO of the Function FIFO, which track the
read and write addresses, respectively, of the Function FIFO.
Furthermore, the Condition and Function FIFOs may have
the same number of entries, with one-to-one correspondence
of Function FIFO entries to Condition FIFO entries. Accord-
ing to one embodiment, in normal operation the pointers of
the Condition FIFO and Function FIFO may operate wherein
PRTR1=PRTRO and WPTR1=WPTRO at some or all times.

During operation, a value (e.g., ‘1”) may be written to the
VLD field in the Condition FIFO when a corresponding entry
in the Function FIFO is written. When reading the Function
FIFO, the system may be configured to check the VLD field in
the corresponding Condition FIFO entry to determine if the
VLD field is set to “0,” in which case the message to be read in
the Function FIFO is indicated as being invalid.

In certain embodiments, the Condition FIFO is manipu-
lated during the clean-up phase as follows: a FIFO Read is
performed to move RPTR1 to WPTR1 (e.g., involving M
number of operations, wherein RPTR1 and WPTR1 are sepa-
rated by M entries); next, a Read-Compare-Write operation is
performed to update the VLD field (e.g., N number of opera-
tions), for example, to indicate an entry is no longer valid due
to a reset of a particular data port; the RPTR1 and WPTR1
move together. A FIFO Read operation may then be per-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

formed to move RPTR1 back to its original location (N-M
operations). Finally, normal operation may be resumed.

FIG. 6 provides an illustration of an example implementa-
tion, wherein the relevant condition of interest recorded in the
Condition FIFO is PortID, identifying a port over which a
corresponding entry in the Function FIFO was received. The
Function FIFO (or “Command” FIFO), may be configured to
buffer host commands to be processed. As an example, the
embodiment of FIG. 6 may correspond to a system in which
the Command FIFO buffers commands received over two
separate ports. A host command may be received from either
of the two ports. For example, the HostCmd in an entry 1-1'
may be from Port O, whereas the HostCmd in entry ‘i’ may be
from Port 1 and the HostCmd in entry “i+1”” may come from
Port 0, etc. FIG. 6 illustrates an example FIFO status repre-
sentation when graceful stop is employed, in which the port
information is used to invalidate certain entries associated
with the port in which reset occurred, and the data storage
device is able to in effect “clean-up” the Function FIFO by not
executing the invalidated entries upon resumption of normal
operation.

FIFO Clean-Up

FIGS. 7A-9B, described in detail below, provide state dia-
grams illustrating possible steps in a condition FIFO clean-up
process according to one or more embodiments. The Condi-
tion and/or Function FIFO data structures illustrated in FIGS.
7A-9B may be similar in function and/or configuration to
those described above with respect to FIGS. 5 and 6. The state
diagram of FIG. 7A illustrates a first state (identified as
“MOV”), wherein a FIFO Read operation is performed M
number of times to move RPTR1 to WPTR1. As shown, the
state diagram loops at the “MOV” state until RPTR1 meets
WPTRI1, wherein RPTR1 is incremented after each read
operation. FIG. 7B shows an example Condition FIFO in a
condition where RPTR1 and WPTR1 have been brought into
alignment after the “MOV” state.

FIG. 8A illustrates a second state (identified as “CHK”) in
which a Read-Comp-Write operation is performed N number
of'times to update VLD bits in the Condition FIFO. That is, at
each location, the associated entry is read out, one or more
condition fields are compared to determine whether the valid-
ity field is to be updated, and, when update is required, writing
anew value to the validity field. If, for example, Port O is reset,
each entry may be read out and the respective PortIDs may be
compared with Port 0. If matched, the associated VLD bit is
written to, for example, ‘0;" otherwise, the VLD bit may
remain as, for example, ‘1,” indicating that the entry is valid.
In certain embodiments, it is desirable for the Read-Comp-
Write to be performed in the same entry before manipulating
the next entry. FIG. 8B shows the iteration of the Read-Comp-
Write operation through the entries of the Condition FIFO,
and the dotted line shows the movement of the pointers to
accomplish the update of the entries.

FIG. 9A illustrates a third state (identified as “RTN”) in
which RPTRI1 is returned to its original position. For
example, this may be achieved by reading the Condition FIFO
N-M times. If necessary, WPTR1 is also returned to its origi-
nal position; in some embodiments, WPTR1 will have
returned to its original position during processing while in the
“CHK” state. After clean-up, the VLD bits in the Condition
FIFO may be updated. Then, normal operation may resume.
While stepping through the entries of the Function FIFO,
depending on the various VLD bit values, invalid HostCmd
entries, as indicated by the Condition FIFO entries, might be
dropped or a different operation from normal operation may
be implemented.

US 9,122,424 B1

7

The various embodiments disclosed herein may provide
improvements over existing systems by allowing for hard-
ware solutions without substantial firmware interference. The
features disclosed herein may be utilized in error handling,
dual-port reset, virtual function reset and/or other operations.
Function FIFO Processing

FIG. 10 is a flow diagram showing a process for executing
operations in a data storage device according to one or more
embodiments of the present disclosure. The process 1000
may be implemented in a data storage device utilizing FIFO
data structures for data management. For example, a data
storage device may be configured to process entries in a
function FIFO, as described herein. In certain embodiments,
the function FIFO includes host commands received from one
or more hosts or systems. A processor may be configured to
read commands or other data entries from the function FIFO
in a sequential manner.

As described above, the function FIFO may be read at a
location identified by a read pointer, which is referred to
herein for convenience as ‘RPTRO.” Prior to processing the
function FIFO entry at RPTRO, the process 1000 may include
referencing a corresponding entry in a condition FIFO data
structure to determine whether the function FIFO entry is
valid. For example, a corresponding pointer may be used to
track the location of the corresponding condition FIFO entry,
which is referred to herein for convenience as ‘RPTR1”

By checking a valid bit field of the condition FIFO entry, it
may be determined whether the corresponding function FIFO
entry is valid. For example, in an embodiment, if a valid bit is
equal to ‘1,” as shown at blocks 1006 and 1008, the function
FIFO entry is determined to be valid, and is executed by the
processor.

When the function FIFO entry is not valid, the process
1000 involves incrementing the read pointer, RPTRO, so that
the next entry in the function FIFO may be processed, without
executing the invalid entry. This may help provide increased
efficiency by preventing the wasting of resources executing
invalid entries.

The process 1000 further involves determining whether the
read pointer of the function FIFO, RPTRO, points to the same
location as the write pointer of the function FIFO, WPTRO. If
so, then no entries in the function FIFO remain to be pro-
cessed, and the process 1000 ends at block 1012. If the two
pointers do not point to the same location, then entries remain
to be processed in the function FIFO, and the process 1000
returns to block 1002.

Other Variations

As used in this application, “non-volatile memory” may
refer to solid-state memory such as, but not limited to, NAND
flash. Alternatively or additionally, “non-volatile memory”
may refer to more conventional hard drives and hybrid hard
drives including both solid-state and hard drive components.
The solid-state storage devices (e.g., dies) may be physically
divided into planes, blocks, pages, and sectors, as is known in
the art. Other forms of storage (e.g., battery backed-up vola-
tile DRAM or SRAM devices, magnetic disk drives, etc.) may
additionally or alternatively be used.

Those skilled in the art will appreciate that in some
embodiments, other types of data storage systems and/or
FIFO management can be implemented. For example, vari-
ous embodiments may be extended to cover command/data
from three or more ports. In addition, the actual steps taken in
the processes discussed herein may differ from those
described or shown in the figures. Depending on the embodi-
ment, certain of the steps described above may be removed,
others may be added.

10

15

20

25

30

35

40

45

50

55

60

65

8

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of protection. Indeed,
the novel methods and systems described herein may be
embodied in a variety of other forms. Furthermore, various
omissions, substitutions and changes in the form of the meth-
ods and systems described herein may be made. The accom-
panying claims and their equivalents are intended to cover
such forms or modifications as would fall within the scope
and spirit of the protection. For example, the various compo-
nents illustrated in the figures may be implemented as soft-
ware and/or firmware on a processor, ASIC/FPGA, or dedi-
cated hardware. Also, the features and attributes of the
specific embodiments disclosed above may be combined in
different ways to form additional embodiments, all of which
fall within the scope of the present disclosure. Although the
present disclosure provides certain preferred embodiments
and applications, other embodiments that are apparent to
those of ordinary skill in the art, including embodiments
which do not provide all of the features and advantages set
forth herein, are also within the scope of this disclosure.
Accordingly, the scope of the present disclosure is intended to
be defined only by reference to the appended claims.

What is claimed is:

1. A data storage device comprising:

a memory configured to store data entries;

a first input port; and

a controller configured to:

receive a first data entry over the first input port;

store the first data entry in a first data structure in the
memory;

in connection with the storage of the first entry in the first
data structure, store a second data entry correspond-
ing to the first data entry in a second data structure
separate from the first data structure, wherein entries
of the second data structure include a valid bit field
and one or more condition fields; and

indicate, using the valid bit field of the second data entry
in the second data structure, that the first data entry in
the first data structure is valid.

2. The data storage device of claim 1, further comprising a
second input port, wherein the controller is further configured
to:

receive a third data entry over the second input port, the

third data entry and first data entry being of a same type
of data entry;

store the third data entry in the first data structure in the

memory;

in connection with the storage of the third data entry in the

first data structure, store a fourth data entry correspond-
ing to the third data entry in the second data structure;
and

indicate, using a valid bit field of the fourth data entry, that

the third data entry is valid.

3. The data storage device of claim 1, wherein the control-
ler is further configured to store a condition value in a condi-
tion field of the second data entry of the second data structure.

4. The data storage device of claim 3, wherein the condition
value indicates that the first data entry was received over the
first input port.

5. The data storage device of claim 1, wherein the control-
ler is further configured to:

receive a signal indicating that an event related at least in

part to the first input port has occurred; and

indicate, using the valid bit field of the second data entry,

that the first data entry is invalid.

US 9,122,424 B1

9

6. The data storage device of claim 5, wherein the control-
ler is further configured to update valid bit fields of one or
more additional entries of the second data structure to indi-
cate that entries of the first data structure that were received
over the first input port are invalid.

7. The data storage device of claim 6, wherein the control-
ler is further configured to locate the valid bit fields to be
updated using condition fields that indicate that the one or
more additional entries were received over the first input port.

8. The data storage device of claim 1, wherein the control-
ler is further configured to:

receive a signal indicating that an event affecting a validity

status of a subset of entries stored in the first data struc-
ture has occurred, and

indicate, using valid bit fields of corresponding data entries

associated with the subset of entries stored in the second
data structure, that the subset of entries are invalid.

9. The data storage device of claim 1, wherein a first set of
data entries stored in the first data structure comprise instruc-
tions, wherein the controller is further configured to:

determine whether each of the first set of data entries stored

in the first data structure is valid by checking a valid bit
field of each of a second set of data entries stored in the
second data structure, each of the first set of data entries
corresponding to one of the second set of data entries;
and

execute only valid data entries of the first set of data entries.

10. The data storage device of claim 1, wherein the first
data structure is a FIFO data structure.

11. The data storage device of claim 1, wherein the one or
more condition fields are configured to store a port identifi-
cation value.

12. A method of managing data in a data storage system,
the method comprising:

receiving a first data entry of a first type over a first input

port;

storing the first data entry in a first data structure stored in

a memory array configured to store data entries of the
first type;

generating a second data structure separate from the first

data structure, wherein entries of the second data struc-
ture are of a second type including a valid bit field and
one or more condition fields;
in response to said storing of the first data entry in the first
data structure, storing a second data entry corresponding
to the first data entry in the second data structure; and

indicating, using a valid bit field of the second data entry in
the second data structure, that the first data entry in the
first data structure is valid;

wherein the method is performed under the control of a

controller of the data storage system.

13. The method of claim 12, further comprising:

receiving a third data entry of the first type over a second

input port;

storing the third data entry in the first data structure;

in response to said storing the third data entry in the first

data structure, storing a fourth data entry corresponding
to the third data entry in the second data structure; and

20

40

45

55

10

indicating, using a valid bit field of the fourth data entry,

that the third data entry is valid.

14. The method of claim 12, further comprising storing a
condition value in a condition field of the second entry in the
second data structure.

15. The method of claim 14, wherein the condition value
indicates that the first data entry was received over the first
input port.

16. The method of claim 12, further comprising:

receiving a signal indicating that an event related at least in

part to the first input port has occurred; and

indicating, using the valid bit field of the second data entry,

that the first data entry is invalid.

17. The method of claim 16, further comprising updating
valid bit fields of one or more additional entries of the second
data structure to indicate that entries of the first data structure
that were received over the first input port are invalid.

18. The method of claim 12, further comprising:

receiving a signal indicating that an event affecting a valid-

ity status of a subset of entries stored in the first data
structure has occurred, and

indicating, using valid bit fields of corresponding data

entries associated with the subset of entries stored in the
second data structure, that the subset of entries are
invalid.

19. The method of claim 12, wherein a first set of data
entries stored in the first data structure comprise instructions,
the method further comprising determining whether each of
the first set of data entries stored in the first data structure is
valid by checking valid bit fields of each of a second set of
data entries stored in the second data structure, each of the
first set of data entries corresponding to one of the second set
of data entries.

20. The method of claim 12, wherein the first data structure
is a FIFO data structure.

21. The method of claim 12, wherein the one or more
condition fields are configured to store a port identification
value.

22. A data storage device, comprising:

a plurality of interfaces through which the data storage

device receives commands from one or more hosts; and

a controller configured to:

store commands received through the plurality of inter-
faces in a first data structure until they are processed;

for each command received, store validity information
and source information indicating the interface
through which the command was received in a second
data structure; and

upon detection of a reset event associated with an inter-
face:

halt processing of commands from the data structure;

selectively update the validity information stored in the
second data structure for the commands based on the
corresponding source information; and

resume processing of commands from the data structure.

#* #* #* #* #*

